Concise Integer Linear Programming Formulations for Dependency Parsing
نویسندگان
چکیده
We formulate the problem of nonprojective dependency parsing as a polynomial-sized integer linear program. Our formulation is able to handle non-local output features in an efficient manner; not only is it compatible with prior knowledge encoded as hard constraints, it can also learn soft constraints from data. In particular, our model is able to learn correlations among neighboring arcs (siblings and grandparents), word valency, and tendencies toward nearlyprojective parses. The model parameters are learned in a max-margin framework by employing a linear programming relaxation. We evaluate the performance of our parser on data in several natural languages, achieving improvements over existing state-of-the-art methods.
منابع مشابه
Incremental Integer Linear Programming for Non-projective Dependency Parsing
Integer Linear Programming has recently been used for decoding in a number of probabilistic models in order to enforce global constraints. However, in certain applications, such as non-projective dependency parsing and machine translation, the complete formulation of the decoding problem as an integer linear program renders solving intractable. We present an approach which solves the problem in...
متن کاملMulti-lingual Dependency Parsing with Incremental Integer Linear Programming
Our approach to dependency parsing is based on the linear model of McDonald et al.(McDonald et al., 2005b). Instead of solving the linear model using the Maximum Spanning Tree algorithm we propose an incremental Integer Linear Programming formulation of the problem that allows us to enforce linguistic constraints. Our results show only marginal improvements over the non-constrained parser. In a...
متن کاملDependency Parsing with Bounded Block Degree and Well-nestedness via Lagrangian Relaxation and Branch-and-Bound
We present a novel dependency parsing method which enforces two structural properties on dependency trees: bounded block degree and well-nestedness. These properties are useful to better represent the set of admissible dependency structures in treebanks and connect dependency parsing to context-sensitive grammatical formalisms. We cast this problem as an Integer Linear Program that we solve wit...
متن کاملInteger Linear Programming for Discourse Parsing
In this paper we present the first, to the best of our knowledge, discourse parser that is able to predict non-tree DAG structures. We use Integer Linear Programming (ILP) to encode both the objective function and the constraints as global decoding over local scores. Our underlying data come from multi-party chat dialogues, which require the prediction of DAGs. We use the dependency parsing par...
متن کاملSolving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming
Despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. This paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (MIP) models to solve thisproblem. These models have been formulated for the classical single machine problem, namely sequ...
متن کامل